Подпишись и читай
самые интересные
статьи первым!

За счет чего самолет поднимается вверх. Почему летает самолет? Как летает самолет

Приход лета в некоторые жаркие уголки нашей планеты приносит с собой не только изнурительный зной, но и задержки рейсов в аэропортах. Например, в Фениксе, штат Аризона, температура воздуха на днях достигла +48°С и авиакомпании были вынуждены отменить или перенести свыше 40 рейсов. В чём причина? Разве самолёты не летают в жару? Летают, но не при всякой температуре. По сообщениям СМИ, жара представляет особую проблему для самолётов Bombardier CRJ, максимальная рабочая температура взлёта для которых составляет +47,5°С. В то же время, большие самолёты от Airbus и Boeing могут летать и при температуре до +52°С градусов или около того. Разбираемся, чем вызваны такие ограничения.

Принцип подъёмной силы

Прежде чем пояснить, почему не каждый борт способен взлететь при высокой температуре воздуха необходимо осознать сам принцип, как летают самолёты. Конечно, каждый помнит ответ ещё со школы: «Всё дело в подъёмной силе крыла». Да, это верно, но не очень убедительно. Чтобы действительно понять законы физики, которые здесь задействованы, нужно обратить внимание на закон импульса . В классической механике импульс тела равен произведению массы m этого тела на его скорость v, направление импульса совпадает с направлением вектора скорости.

На этом этапе вы можете подумать, что речь идёт об изменении импульса самолёта. Нет, вместо этого рассмотрим изменение импульса воздуха , набегающего на плоскость крыла. Представьте себе, что каждая молекула воздуха - это крошечный шар, который соударяется с самолётом. Ниже приведена диаграмма, которая показывает этот процесс.

Движущееся крыло сталкивается с воздушными шарами (то есть, молекулами воздуха). Шары изменяют свой импульс, что требует приложения силы. Поскольку действие равно противодействию, сила, которую крыло прикладывает к шарикам воздуха, имеет ту же величину, что и сила, с которой сами шарики воздействуют на крыло. Это приводит к двум результатам. Во-первых, обеспечивается подъёмная сила крыла. Во-вторых, появляется обратная сила - тяга. Вы не можете достичь подъёма без тяги .

Чтобы генерировать подъёмную силу, самолёт должен двигаться, а чтобы увеличить его скорость, вам нужна большая сила тяги. Если быть более точным, то вам потребуется ровно столько тяги, сколько нужно, чтобы сбалансировать силу сопротивления воздуха - тогда вы летите с той скоростью, с которой хотите. Как правило, эту тягу обеспечивают реактивный двигатель или пропеллер. Скорее всего, вы могли бы использовать даже ракетный двигатель, но в любом случае - вам нужен генератор тяги.

При чём здесь температура?

Если крыло сталкивается всего с одним шариком воздуха (то есть молекулой), это не приведёт к большой подъёмной силе. Чтобы увеличить подъёмную силу нужно много столкновений с молекулами воздуха. Добиться этого можно двумя путями:

  • двигаться быстрее , увеличивая число молекул, которые входят в контакт с крылом в единицу времени;
  • сконструировать крылья с большей площадью поверхности , потому что в таком случае крыло будет сталкиваться с большим числом молекул;
  • ещё один способ увеличения площади поверхности соприкосновения - использовать больший угол атаки за счёт наклона крыльев;
  • наконец, можно добиться большего числа столкновений крыла с молекулами воздуха, если плотность самого воздуха выше , то есть, количество самих молекул в единице объёма больше. Иными словами, увеличение плотности воздуха повышает подъёмную силу.

Этот вывод подводит нас к температуре воздуха. Что представляет собой воздух? Это множество микрочастиц, молекул, которые движутся прямо вокруг нас в разном направлении и с разной скоростью. И эти частицы сталкиваются друг с другом. По мере повышения температуры средняя скорость движения молекул также увеличивается. Увеличение температуры приводит к расширению газа, и одновременно - к уменьшению плотности воздуха . Вспомните, что нагретый воздух легче холодного, именно на этом явлении выстроен принцип воздухоплавания шаров-монгольфьеров.

Итак, для большей подъёмной силы нужна либо более высокая скорость, либо большая площадь крыла, либо больший угол атаки молекул на крыло. Ещё одно условие: чем выше значение плотности воздуха - тем больше подъёмная сила. Но верно и обратное: чем меньше плотность воздуха, тем меньше подъёмная сила. И это актуально для жарких уголков планеты. Из-за высокой температуры плотность воздуха слишком низкая для некоторых самолётов , её недостаточно, чтобы они могли взлететь.

Конечно, можно компенсировать снижение плотности воздуха за счёт увеличения скорости. Но как это осуществить в реальности? В таком случае необходимо устанавливать на самолёт более мощные двигатели, либо увеличивать длину взлётно-посадочной полосы. Поэтому для авиакомпаний гораздо проще некоторые рейсы просто отменить. Или, по крайней мере, перенести на вечер, раннее утро, когда температура окружающей среды буде ниже максимально допустимого предела.

Самолет – это летательный аппарат, имеющий массу больше массы воздуха, и подъемную силу, созданную по аэродинамическому принципу (отбрасывание вниз части воздуха за счет обтекания крыла). Подъемная сила - это и есть ответ на вопрос о том, почему самолеты летают. Ее создают несущие поверхности (в основном, крылья) при движении навстречу воздушному потоку самолета, развивающего скорость при помощи силовой установки или турбины. За счет силовой установки, создающей силу тяги, самолет способен преодолевать сопротивление воздуха.

Самолеты летают по законам физики

В основе аэродинамики как науки заложена теорема Николая Егоровича Жуковского, выдающегося русского ученого, основателя аэродинамики, которая была сформулирована еще в 1904 году. Спустя год, в ноябре 1905 года Жуковский изложил свою теорию создания подъемной силы крыла летательного аппарата на заседании Математического общества.

Для того чтобы подъемная сила смогла поднять в воздух современный самолет, даже весом в десятки тонн, его крыло должно иметь достаточную площадь. На подъемную силу крыла влияет множество параметров, таких как профиль, площадь, форма крыла в плане, угол атаки, скорость и плотность воздушного потока. Каждый самолет имеет свою минимальную скорость, при которой он может взлетать и лететь, не падая. Так, минимальная скорость современных пассажирских самолетов находится в пределах от 180 до 250 км/ч.

Почему самолеты летают с разной скоростью?

От требуемой скорости самолета зависит и его размер. Площадь крыльев медленных транспортных самолетов должна быть достаточно большой, так как подъемная сила крыла и скорость, развиваемая самолетом, прямо пропорциональны. Большая площадь крыльев у медленных самолетов обусловлена тем, что при достаточно малых скоростях подъемная сила невелика.

Скоростные самолеты, как правило, имеют гораздо меньшие по размерам крылья, обладающие при этом достаточной подъемной силой. Чем меньше плотность воздуха, тем меньшей становится подъемная сила крыла, поэтому на большой высоте скорость самолета должна быть выше, чем при полете на малой высоте.

Почему самолеты летают так высоко?

Высота полета современных реактивных самолетов находится в пределах от 5000 до 10000 метров над уровнем моря. Это объясняется очень просто: на такой высоте плотность воздуха намного меньше, а, следовательно, меньше и сопротивление воздуха. Самолеты летают на больших высотах, потому что при полете на высоте 10 километров самолет расходует на 80% меньше горючего, чем при полете на высоте в один километр. Однако почему же тогда они не летают еще выше, в верхних слоях атмосферы, где плотность воздуха еще меньше? Дело в том, что для создания необходимой тяги двигателем самолета необходим определенный минимальный запас воздуха. Поэтому у каждого самолета имеется наибольший безопасный предел высоты полета, называемый также «практический потолок». К примеру, практический потолок самолета Ту-154 составляет около 12100 метров.

Довольно странно наблюдать, как многотонная машина легко поднимается со взлетной полосы аэродрома и плавно набирает высоту. Казалось бы, поднять столь тяжелую конструкцию в воздух задача невыполнимая. Но, как видим, это не так. Почему самолет не падает, и за счет чего летит?

Ответ на этот вопрос лежит в тех физических законах, которые позволяют поднять в воздух летательные аппараты. Они верны не только в отношении планеров и легких спортивных самолетов, но и в отношении многотонных транспортных лайнеров, которые способны нести дополнительную полезную нагрузку. И вообще уж фантастическим, кажется полет вертолета, которые может не только двигаться по прямой линии, но и зависать на одном месте.

Полет летательных аппаратов стал возможен, благодаря совокупному использованию двух сил – подъемной, и силы тяги двигателей. И если с силой тяги все более или менее понятно, то с подъемной силой все обстоит несколько сложнее. Несмотря на то, что с этим выражением мы все хорошо знакомы, объяснить его может не каждый.

И так, какова природа появления подъемной силы?

Давайте внимательно посмотрим на крыло самолета, благодаря которому он и может держаться в воздухе. Снизу оно совершенно плоское, а сверху имеет сферическую форму, с выпуклостью наружу. Во время движения самолета воздушные потоки спокойно проходят под нижней частью крыла, не претерпевая каких — либо изменений. Но чтобы пройти над верхней поверхностью крыльев, воздушный поток должен сжаться. В результате мы получаем эффект продавленной трубы, сквозь которую должен пройти воздух.

Чтобы обогнуть сферическую поверхность крыла, воздуху понадобится больше времени, нежели при его прохождении под нижней, плоской поверхностью. По этой причине над крылом он движется быстрее, что, в свою очередь, приводит к возникновению разности давлений. Под крылом оно значительно больше, нежели над крылом, из-за чего и возникает подъемная сила. В данном случае действует закон Бернулли, с которым каждый из нас знаком со школьной скамьи. Самое главное в том, что разность давлений будет тем больше, чем выше скорость движения объекта. Вот и получается, что подъемная сила может возникать лишь при движении самолета. Она давит на крыло, заставляя его подниматься.

По мере разгона самолета по взлетной полосе, увеличивается и разность давлений, что приводит к возникновению подъемной силы. С набором скорости она постепенно растет, сравнивается с массой самолета, и как ее превысит, он взлетает. После набора высоты, пилоты уменьшают скорость, подъемная сила сравнивается с весом самолета, что заставляет его лететь в горизонтальной плоскости.

Чтобы самолет двигался вперед, его оснащают мощными двигателями, которые гонят воздушный поток в направлении крыльев. С их помощью можно регулировать интенсивность воздушного потока, а, следовательно, и силу тяги.

Мы расскажем Вам, почему важно пройти обучение на пилота , знать что такое пилотирование самолета и как летает самолет .

Для курсанта, начинающего обучение на пилота самолета, это может стать не самым приятным сюрпризом. Давно пора возвращаться на землю, а самолет все еще летит.

В 20-е годы прошлого века авиаконструкторы столкнулись со странным явлением. Самолеты, построенные по всем законам классической аэродинамики, вдруг оказались непригодными для использования с существующей инфраструктурой. Казалось бы, все сто раз посчитано и просчитано, но вопреки цифрам и здравому смыслу самолет не может «вписаться» в длину посадочной полосы. Позднее для борьбы с этим явлением придумали интерцепторы (они же спойлеры), а сам эффект получил название «экрана».

Ученые авторы пособий по аэродинамике предлагают сложное определение экранного эффекта. Им, ученым, так по статусу положено. Реальные же пилоты объясняют все гораздо проще:
«Экран на посадке ощущаешь пятой точкой. Когда режим двигателям убрал, скорость минимальная, а самолет «почему-то» садиться не хочет».

Со стороны это выглядит так, будто самолет возомнил себя планером, или летчик решил поиграться в парашютиста: есть у них такая дисциплина, в которой кто дальше пролетит горизонтально над землей, тот самый крутой.

Разумеется, каждый пилот самолета , узнав что такое пилотирование самолета и как летает самолет в летной школе, прекрасно знает, что в так называемой «зоне влияния земли» возможен экранный эффект (в английском языке используется гораздо более понятный термин ground effect). Но часто его ошибочно называют «воздушной подушкой». На самом деле эффект планирования на сверхмалой высоте имеет отношение к воздушной подушке только в одном случае. Если вы летаете на чем-то таком:

А вот почему это происходит в авиации, давайте разберем.

Обучение на пилота: теория прежде всего

Если бы стояла задача, объяснить экранный эффект в двух словах, это были бы слова wingtip vortices. Дословно – вихри на концах крыла. На современном этапе развития авиастроения они являются предметом главной головной боли конструкторов.

Именно концевые вихри индуцируют сопротивление, которое так и называется «индуктивное» и для борьбы с которым приходится тратить лишнее топливо. Именно они оставляют позади летящего самолета спутный след, в который может попасть другой самолет, что уже не раз становилось причиной авиакатастроф. Наконец, именно они создают экранный эффект, добавляя пилоту хлопот на приземлении.
Осталось понять, откуда они берутся.

Как летает самолет

Как обычно, все начинается с азов. Благодаря особой форме профиля набегающий поток воздуха обтекает крыло по-разному. Снизу быстрее, сверху – медленнее. Возникает разница давлений, в результате которой более плотный воздух снизу как бы «выдавливает» крыло вверх. Это самое примитивное объяснение возникновения подъемной силы.

Но крыло (к великому сожалению авиаконструкторов) не бесконечно, поэтому где-то обязательно возникает область, в которой плотный воздух снизу и разреженный сверху соприкоснутся. Несложно догадаться, что произойдет это там, где крыло кончается.

Теперь вспоминаем школьный курс физики и принцип сообщающихся сосудов. Если в одной части давление больше, а в другой меньше, молекулы газа будут вести себя так, чтобы давление уравновесилось. Иными словами, из области высокого давления воздух стремится убежать в область низкого. Как ему это сделать? Разумеется, через ту же законцовку крыла (на самом деле процесс происходит и в других частях крыла, но именно здесь он наиболее выраженный). Воздух из-под нижней плоскости крыла движется наверх, создавая на кончиках крыла направленные вверх завихрения.

Но самолет-то в это время продолжает лететь вперед! В результате каждый такой поток закручивается в спираль. Это и есть концевой вихрь (он же вихревой жгут, он же спутный вихрь или спутный след).

Иногда такие вихри можно наблюдать невооруженным глазом. Например, во время авиашоу, когда сверхзвуковые истребители выполняют фигуры высшего пилотажа, а погода достаточно влажная, за ними отчетливо видна спутная струя. Вот это оно и есть.

Бороться можно, но сложно

В принципе, концевые вихри затухают буквально через несколько минут, но за большим тяжелым самолетом могут растянуться на километры. Пилот самолета , летящего следом, рискует попасть в такую сильную турбулентность, которая чревата полной потерей управляемости.

Пока аэропорты вкладывают миллионы денег в разработку систем, которые позволят рассеивать вихревой след, авиаконструкторы уже придумали способ минимизировать его образование. Для этого на современные пассажирские авиалайнеры ставят законцовки особой формы – винглеты или шаркелетты. Они изгибаются кверху, тем самым лишая воздух возможности свободно перетекать снизу вверх.

Аэропортам это нужно, чтобы минимизировать интервал между взлетами и посадками, а авиакомпаниям – чтобы сократить издержки. Чем слабее концевой вихрь, тем меньше индуктивное сопротивление, тем ниже расход топлива.

Недавно винглетами оснастили даже ремортизированного «старичка» Ан-2. Но помимо преимуществ у винглетов есть и недостатки: экономия топлива происходит в основном в крейсерском режиме полета на большой скорости на длинные расстояния. Так что малой авиации с ее частыми взлетами-посадками и короткими маршрутами технологическая революция в ближайшей перспективе вряд ли грозит. Придется научиться летать с тем, что есть.

Летная школа: еще немного теории

Все описанное выше относилось к полету на высоте. Теперь представим, что самолет с тянущимся по обе стороны шлейфом концевых вихрей идет на посадку.
Картинки ниже даже не требуют особых пояснений.

В первом варианте (на высоте) вихревые потоки проворачиваются по такой траектории, которая создает дополнительное давление вниз. То есть подъемная сила крыла становится меньше. Но когда самолет приближается к земле (или воде), концевой вихрь разбивается о препятствие. Таким образом, подъемная сила крыла становится больше, хотя другие условия (скорость, угол атаки и т.д.) не изменились.
Но и это еще не все.

На высоте концевые вихри создают дополнительное давление на верхнюю плоскость крыла. Иными словами, возрастает вертикальная скорость, направленная вниз. Из-за этого воздух, который обтекает крыло сверху, тоже меняет свое направление. Возникает так называемый скос потока.

Около земли концевые вихри «разбиваются» о поверхность. Давление на верхнюю плоскость крыла ослабевает, соответственно скос потока становится меньше:

Пилотирование самолета: куда косит поток

Говоря про меньший скос потока, мы подразумеваем, что воздух обтекает верхнюю плоскость крыла ровнее. Направление его движения становится более пологим, ближе к горизонтали. А как известно, подъемная сила, всегда перпендикулярна набегающему потоку. Чем горизонтальнее поток, тем явственнее вектор подъемной силы направлен вверх – в противовес силе тяжести.

На высоте скос потока выражен сильнее, поэтому вектор подъемной силы отклоняется назад. Но самолету надо лететь вперед! Решить это противоречие можно увеличив тягу двигателей, заплатив взамен повышенным сопротивлением. Проще говоря, чем ровнее (горизонтальнее) набегающий поток, тем меньше он сопротивляется разрезающему его крылу. Чтобы представить себе, как это все работает, можно внимательно рассмотреть рисунок выше, а можно просто запомнить:

Чем меньше скос потока -> тем меньше сопротивления -> тем больше подъемной силы.

А чем больше подъемная сила и меньше сопротивления, тем дальше самолет планирует, не желая опускаться на бренную землю.

Ни высоко, ни низко, ни далеко, ни близко

Аэродинамика – наука точная, и абстрактные понятия здесь не совсем уместны. Действительно, что значит «экранный эффект проявляется недалеко от земли»? Насколько недалеко?

Очевидно, что если первоисточником экрана являются концевые вихри, то все зависит от габаритов самолета. Чем он больше и тяжелее, тем больше в диаметре срывающиеся с его законцовок вихри. Поэтому большой самолет почувствует эффект влияния земли на большей высоте.

Но тогда почему самый популярный самолет чтобы пройти обучение на пилота - Cessna 172 и, скажем, Piper Warrior, которые находятся примерно в одной весовой категории, планируют по-разному? При одинаковой скорости и погодных условиях, Цесна приземлится заметно ближе.

Ответ – в расположении крыльев. Пайпер – так называемый низкоплан. Его крылья расположены в нижней части фюзеляжа. То есть они гораздо ближе к земле. А раз так, то и эффект влияния земли ощущается сильнее.

Принято считать, что он возникает, когда расстояние до земли равно размаху крыла или меньше. Но сильнее всего экранный эффект проявляется на высоте, равной 20% от размаха. В этот момент крыло индуцирует всего 60% от своего обычного сопротивления. Впрочем, без примеров все равно неубедительно.

Допустим, мы собрались научиться летать самолете Цессна 172. Размах ее крыла составляет 11 метров. 20% - это примерно 2 метра. Иными словами, когда Цессна (точнее, ее крыло) окажется на высоте 2 метра с небольшим, преодолеть оставшееся до земли расстояние может быть не совсем просто.

У Пайпера практически тот же размах (10,5 м), но в отличие от Цессны, его крылья находятся на высоте буквально метр от земли. Следовательно экранный эффект летчик почувствует примерно на той же высоте (2 метра), но его крылья в этот момент будут чуть ли не в двое ниже, чем у коллеги из Цессны. Соответственно, скос потока будет меньше, а сопротивление составит всего 40% от обычного. Понятно, что не меняя скорости такой самолет пролетит гораздо дальше.

Делать-то что?

Может сложиться впечатление, что экранное влияние земли – это сплошные проблемы. Но иногда он все же бывает полезен. Во время Второй мировой войны американские бомбардировщики B-29 летали на сверхдальние расстояния с авиабазы на Марианских островах в Японию. Отказы двигателей в то время считались обычным делом, и очень часто экипажи были вынуждены возвращаться с одним двигателем. Это вызывало кучу проблем – необходимость маневрировать резко сужала возможности, увеличивала расход топлива, и пилотам часто приходилось бросать пилотирование самолета катапультироваться в бескрайние воды Тихого океана. Тогда пилоты приспособились летать на малой высоте, используя экранирующий эффект воды, чтобы разгрузить двигатели.

В малой авиации экранный эффект может пригодиться при посадках на грунтовые полосы, особенно в пору осенне-весенней распутицы. Понимая, как летает самолет и что с ним происходит, можно по примеру планеристов сознательно увеличивать дистанцию горизонтального полета, выбирая для посадки кусочек посуше.

С другой стороны, если в момент посадки вы обнаружили себя летящим там, где по всем расчетам уже должны были кататься, возможно, стоит уйти на второй круг и построить заход с учетом экранного эффекта.

Чтобы подняться в воздух, самолетам требуется развить колоссальную мощность. Двигатели самолетов создают тягу, толкающую их вперед, в то время как особая форма корпуса и крыльев помогает им подниматься кверху.

Сила тяжести тянет самолеты вниз, как и любые другие тела. Однако самолетам удается удерживаться в воздухе именно благодаря воздействию самого воздуха. Обычно воздух давит на тело со всех сторон, но если он движется, то давит сильнее, чем воздух, который движется быстро.

Крылья самолета имеют особую форму, заставляющую воздух двигаться под ними медленнее, чем над ними. Когда самолет достигает определенной скорости, «медленный» воздух под его крыльями начинает давить на них сильнее, чем тот, что над ним — и самолет поднимается к небу. Возникающая при этом сила называется подъемной.

При выстреле из ружья стрелок ощущает отдачу — толчок приклада в плечо. Эта сила действует на приклад ружья очень короткое время — около 0,002 сек. Но на станок пулемета эта сила действует почти постоянно, пока пули вылетают из ствола.

Так же и летательный аппарат может получать постоянную подъемную силу, если он беспрерывно отбрасывает воздух вниз. Именно дли этого и нужны самолету крылья. Если крыло двигается горизонтально и при этом поставлено под углом к направлению движения (этот угол называется углом атаки), оно отбрасывает встречный воздух вниз и тем самым создает подъемную силу, направленную вверх.

Крыло, поставленное под углом атаки, отбрасывает при движении воздух вниз и этим создает подъемную силу.

Образование подъемной силы основано на законе механики о количестве движения (второй закон Ньютона):

m*(v 2 -v 1)=P*t

  • m — масса тела (в нашем случае это масса отбрасываемого воздуха);
  • v 2 — v 1 — изменение скорости тела (в нашем случае — вертикальная скорость отбрасываемого воздуха);
  • Р — сила, действующая на тело (в нашем случае она приложена к воздуху и направлена вниз),
  • t — время.

Следовательно,

P=m/t*(v 2 -v 1)

Так как всякое действие всегда встречает равное по величине и противоположно направленное противодействие (третий закон Ньютона), то подъемная сила Y будет равна силе Р, приложена к крылу самолета и направлена вверх: Y = - Р.

Величина подъемной силы зависит от массы ежесекундно отбрасываемого воздуха m/t, а она в свою очередь зависит от плотности воздуха р, скорости полета v и площади крыла S; вертикальная скорость воздуха v 2 — v 1 зависит от угла атаки крыла и скорости полета. Тогда величину подъемной силы можно выразить формулой:

Y=С y *pv2/2*S

где С y — коэффициент, который зависит от формы крыла и угла атаки.

Итак, подъемную силу можно создавать довольно просто, но для этого обязательно нужно, чтобы крыло в воздухе двигалось. Решается это по-разному: птицы, например, машут крыльями; планеры используют снижение — сопротивление воздуха преодолевает силой тяжести. Самолету же нужен специальный двигатель. Но, может быть, выгоднее повернуть этот двигатель так, чтобы его тяга компенсировала и тяжесть аппарата? В этом нет необходимости, так как подъемная сила крыла во много раз больше сопротивления воздуха. Отношение получаемой подъемной силы к сопротивлению называется аэродинамическим качеством. В настоящее время для дозвуковых самолетов это отношение достигает 25, а для сверхзвуковых — 7.

Развитие авиации во многом зависит от открытий и изобретений в различных областях науки и техники, и в первую очередь от развития науки обтекании тел газом — аэродинамики. Начала этой науки заложены исследования русских ученых Н. Е. Жуковского, С.А. Чаплыгина, С. А. Христиановича, немецких ученых Р. Прандтля, Т. Кармана и др. Кроме того, большую роль в развитии авиации играют: наука о механике полета, материаловедение, изобретения в промышленности, строящей двигатели, и в приборостроении.

Включайся в дискуссию
Читайте также
Как добраться в чешский крумлов из праги самостоятельно Расстояние от карловых вар до крумлова
Авиабилеты Душанбе Урумчи
Авиабилеты Душанбе Урумчи Подбор дешёвых электронных авиабилетов Душанбе - Урумчи